NA, CRH, Cortisol, IL-6 and Glucagon as biomarkers of effect of psychosocial risk factors at work / NA, CRH, Cortisol, IL-6 Y Glucagón como biomarcadores de efecto de factores de riesgo psicosocial en el trabajo

Abstract

Introduction: Biomarkers are substances that can be measured in body fluids and indicate a biological change upon exposure. There are three types: exposure, effect, and individual susceptibility. Those of effect are classified into early effect biomarkers (EEB) and late effect biomarkers. EEBs have a wide field of application in preventive matters, however, they have been used very little to identify and prevent exposure to Psychosocial Risk Factors (PRF). The neuroimmunoendocrine system is in charge of keeping our body in balance, using the biomolecules that communicate with each other in these systems as EEBs, can help prevent the development of various diseases. Our study proposes to use as EEBs by exposure to PRF like NA, HCR, Cortisol, Glucagon and IL-6 because they are biomolecules that have a close bidirectional interaction in the aforementioned regulatory system. Objective. Analyze if the proposed EEBs can be used by exposure to PRF.
Material and methods: NA, HCR, Cortisol, IL-6 and Glucagon concentrations were measured in whole blood serum of 80 Mexican workers, all of whom signed an informed consent letter based on Helsinki´s Declaration. The concentrations were compared with the reference values of each EEBs, likewise, correlations were made with PRF.
Results: The quantified concentrations of HCR and Glucagon were above their reference values in 100% of the participating individuals, followed by NA and IL-6 in 43.8% and 7.5% respectively. IL-6 also presented values below its reference value in 2.5% of the participating individuals, while cortisol was below its lower reference limit value in 83.75%.
Conclusions: The HCR, Glucagon and cortisol presented concentrations outside their reference values in more than 80% of the participants, however, only Glucagon and Cortisol correlated with the PRF evaluated. Glucagon showed a difference with respect to sex, so it can be considered a EEB that better reflects the exposure to PRF. Future studies are recommended to reinforce these findings.

Downloads

Download data is not yet available.

References

Arstila AU, Trump B. (1968). Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol, 687–733.
Banegas Cardero A, Sierra Calzado L. (2017). Variables bioquímicas e inmunológicas en pacientes con estrés agudo o crónico. MEDISAN 21(8), 1018-1026.
Barseghian G, Levine R, Epps P. (1982). Efecto directo del cortisoly la cortisona sobre la secreción de insulina y glucagón. Endocrinology 111(5), 1648-1651.
Beltrán Rosas GE. (2011). Neuroinmunoendocrinología del Estrés. Sistema Nervioso. Recuperado de https://www.produccion-animal.com.ar/
Brown NF, Salter AM, Fears R, Brindley DN. (1989). Glucagon, cyclic AMP and adrenaline stimulate the degradation of low-density lipoprotein by cultured rat hepatocytes. Biochem J, 425–429.
Cortés Romero CE, Escobar Noriega A, Cebada Ruíz J, Soto Rodríguez G, Bilbao Reboredo T, Vélez Pliego M. (2018). Estrés y Cortisol: implicaciones en la ingesta de alimento. Revista Cubana de Investigaciones Biomédicas, 1-15.
De Nicola AF. (2015). Mecanismos Neuroendócrinos de Respuesta durante el Estrés y la Carga Alostática. Ciencia e Investigación, 17-26.
Gan SD, Patel KR. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol, 133(9), 1-3.
Gómez González B y Escobar A. (2006). Estrés y sistema inmune. Rev Mex Neuroci, 30-38.
Gómez-Alcaina B, Montero-Marín J, De Marzo MM, Pereira JP, y García-Campayo J. (2013). Utilidad de los marcadores biológicos en la detección precoz y prevención del síndrome de burnout. Revista de Psicopatología y Psicología Clínica, 245-253.
González y González, I. (2015). El cortisol en pelo como marcador biológico de estrés crónico y de depresión. https://www.tdx.cat/bitstream/handle/10803/377465/igyg1de1.pdf?sequence=1&isAllowed=y
González-Mujica, F. (2019). Monografías docentes: Glucagón y la hipótesis bihormonal de la diabetes. https://vitae.ucv.ve/?module=articulo&rv=143&n=6002
Hernández FG. (2000). El papel de los Biomarcadores en Toxicología Humana. Revista de Toxicología, 19-26.
Hernández-Quiceno, Uribe-Bojanini, Alfa-ro-Velásquez, Campuzano-Maya y Salazar-Peláez. (2016). Cortisol: mediciones de cortisol y aplicación clínica. Medicina & Laboratorio, 22:147-164.
Horizon, E. U. (2020). Biomarcadores de Efecto: Lo que necesitas saber. https://www.hbm4eu.eu/wp-content/uploads/2018/12/Biomarkers-of-effects-factsheet_ES_final.pdf.
Janah L, Kjeldsen S, Galdsgaard KD, Winther-Sorensen M, Stojanovska E, Pedersen J, Knop FK, Holst JJ, Wewer Albrechtsen NJ. (2019). Review: Glucagon Receptor Signaling and Glucagon Resistance . International Journal of Molecular Sciences, 1-27.
Jones BJ, Tan T, Bloom SR. (2012). Minireview: Glucagon in Stress and Energy Homeostasis. Endocrinology, 1049-1054.
Karlsson, S. y Ahrén, B. (2013). Efectos de la hormona liberadora de dorticotropina sobre la secreción de insulina y glucagón en ratones. Acta Endocrinologica, 234-239.
Lazcano I, Rodríguz-Rodríguez A, Uribe MR, Orozco A, Joseph-Bravo P, Jean-Louis Ch. (2021). Evolution of thyrotropin-releasing factor extracellular communication units. https://doi.org/10.1016/j.ygcen.2020.113642
Lemos M. (2015). La teoría de la alóstasis como mecanismo explicativo entre los apegos inseguros y la vulnerabilidad a enfermedades crónicas. Anales de Psicología, 452-461.
Lucchesi BR. (1968). Cardiac actions of glucagon. Circ Res, 777–787.
Martín-Cordero L, García JJ, Ortega E. (2013). Noradrenaline-mediated inhibition of inflammatory cytokines is altered in macrophages from obese Zucker rats: effect of habitual exercise. Endocr Metab Immune Disord Drug Targets, 234-239.
Morales-Jinez A, López-Rincón FJ, Ugarte-Esquivel A, Andrade-Valles I, Rodríguez-Mejía LE, Hernández-Torres JL. (2018). Carga alostática y compañía canina: un estudio comparativo mediante biomarcadores en adultos mayores. Revista Latino-Americana de Enfermagem, 2-7.
Morera LP, Tempesti TC, Pérez ER, Medrano LA. (2019). Biomarkers in stress measurement: a systematic review. Ansiedad y Estrés, 1134-7937.
Mucio-Ramírez, JS. (2007). La Neuriquímica del Estrés y el Papel de los Péptidos Opioides. REB, 121-128.
Peñalva, R. (2001). Neurotransmision serotonérgica en el hipocampo: interacciones con el distema de la hormona liberadora de corticotrofina y el ciclo de vigilia-sueño en roedores. https://bibliotecadigital.exactas.uba.ar/download/tesis/tesis_n3321_Penalva.pdf
Raskin P, Unger RH. (1978). Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N Engl J Med., 433–436.
Robert SC. (2019). Impacto de la carga alostática en el nivel cognitivo, la memoria y la masa del ventrículo izquierdo. Revista argentina de cardiología, 36-40.
Rodon CM. (2012). Tesis sobre la detección y tratamiento del estrés. http://www.conchitamir.com/pdf/tesis_estress.pdf.
Taborsky GJ, Mundinger TO. (2012). Minireview: the role of the autonomic nervous system in mediating the glucagon response to hypoglycemia. Endocrinology, 1055-1062.
Wegieł A, Pigoń-Wegiel A. (1994). Plasma pancreatic glucagon during glucose tolerance test in workers exposed to vibration and noise. Pol Arch Med Wewn, 91(4),263-266.
Zapata Sampedro MA, Castro Varela LJ. (2008). El donante de sangre: plan de cuidados enfermeros. Nure Investigation, 37,1-12.
Published
2023-05-16
How to Cite
OLVERA-BELLO, Alejandra Eugenia et al. NA, CRH, Cortisol, IL-6 and Glucagon as biomarkers of effect of psychosocial risk factors at work / NA, CRH, Cortisol, IL-6 Y Glucagón como biomarcadores de efecto de factores de riesgo psicosocial en el trabajo. Network of Research in Occupational Health, [S.l.], v. 4, n. 7, p. 7-19, may 2023. ISSN 2594-0988. Available at: <https://rist.zaragoza.unam.mx/index.php/rist/article/view/607>. Date accessed: 18 may 2024.
Section
Artículos Originales